

MSK200ia-TE, MSK200ib-TE

WINSMART-Unterstützung ab MSK200-Version 4.0 MODBUS-RTU Kommunikation HART-Signalaufschaltung

Mütec Instruments GmbH Bei den Kämpen 26 D-21220 Seevetal-Ramelsloh Tel.: +49 (0) 4185-80 83-0 Fax: +49 (0) 4185-80 83-80 Email: muetec@muetec.de Web: www.muetec.de

WINSMART-Unterstützung ab MSK200-Version 4.0 MODBUS-RTU Kommunikation HART-Signalaufschaltung

Druckschrift-Nr. BA 6.08 Ausgabedatum: 09/2016

Hersteller:

Mütec Instruments GmbH Bei den Kämpen 26 21220 Seevetal Deutschland

Tel.: +49 (0) 4185 8083-0 Fax: +49 (0) 4185 808380

Email: info@muetec.de Internet: www.muetec.de

Lizenz-, Warenzeichen- und Urheberrechtsvermerke

Modbus**TM** ist ein eingetragenes Warenzeichen der Modicon Inc. Windows**TM** ist ein eingetragenes Warenzeichen der Microsoft Corp. HART**TM** ist ein eingetragenes Warenzeichen der HART Communication Foundation

Copyright © Mütec Instruments GmbH 2012 All rights reserved

Dieses Dokument ist urheberrechtlich geschützt. Es unterstützt den Anwender bei der sicheren und effizienten Nutzung des Gerätes. Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung ihres Inhalts ist nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwiderhand-lungen verpflichten zu Schadenersatz.

Die in diesem Dokument beschriebene Software ist lizensiert und darf nur entsprechend den Lizenzbedingungen benutzt und kopiert werden.

Alle Rechte vorbehalten.

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft. Korrekturen und Ergänzungen erfolgen jeweils in der nachfolgenden Version. Für Verbesserungsvorschläge sind wir dankbar.

Technische Änderungen vorbehalten

	Klassifizierung der Sicherheitshinweise Allgemeine Hinweise Einführung	. 4 . 5 . 6
1.0	Allgemeine Informationen für Errichtung und Betrieb	. 7
2.0	Technische Merkmale	. 8
3.0	ATEX (elektrische Höchstwerte)	. 9
4.0	Fehlerzustände und Fehlersignalisierungen	10
5.0	Technische Daten 5.1 Konfigurationsprotokoll 5.2 Berechnung des zulässigen Leitungswiderstandes 5.3 Blockschaltbild 5.4 HART-Signalaufschaltung 5.5 Klemmenbelegung 5.6 Jumper-Finstellungen	11 14 15 16 16 17
6.0 K	onfigurationsprogramm	18
	 6.1 Menüleiste und Befehle	19 19 19 19 19 19 19 19 20 20 22 22 23 23 23 23 23 23 24
	6.2.5 MSK-Adresse 6.2.6 Angeschlossene MSK-Geräte 🗆 Adressen suchen	24 24
	6.3 MSK-Kennung 6.3.1 Serial No. 6.3.2 TAG No. 6.3.3 Adresse	24 24 24 24 24
	 6.4 Messeingang 6.5 Analogausgang 6.6 Alarmausgänge 6.6.1 Differenzieller Gradientenalarm und seine Parametrierung 	25 26 27 28
	 6.7 Überwachungsmaßnahmen 6.8 Diagnosemanager 6.9 Kommentarspeicher 6.10 Online-Darstellung 	29 32 33 34

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise sind durch ein Warndreieck hervorgehoben und je nach Gefährdungsgrad wie folgt dargestellt.

GEFAHR

bedeutet, dass der Tod oder eine schwere Körperverletzung eintreten wird, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

WARNUNG

bedeutet, dass der Tod oder eine schwere Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

VORSICHT

mit Warndreieck bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

VORSICHT

ohne Warndreieck bedeutet, dass ein Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass ein unerwünschtes Ergebnis oder Zustand eintreten kann, wenn der entsprechende Hinweis nicht beachtet wird.

HINWEIS

ist eine wichtige Information über das Produkt, die Handhabung des Produktes oder den jeweiligen Teil der Dokumentation, auf den besonders aufmerksam gemacht werden soll und deren Beachtung empfohlen wird.

Neben diesen Hinweisen in dieser Druckschrift müssen die allgemeingültigen Sicherheits- und Unfallverhütungsvorschriften berücksichtigt werden.

Sollten die in dieser Druckschrift enthaltenen Informationen in irgendeinem Fall nicht ausreichen, so steht Ihnen unserer telefonischer Service für weitergehende Auskünfte zur Verfügung. Vor der Installation und Inbetriebnahme lesen Sie bitte diese Druckschrift sorgfältig durch.

CE-Kennzeichen

Dieses Produkt erfüllt die Spezifikationen gemäß EMC-Richtlinie 2004/108/EG und der Niederspannungs-Richtlinie 2006/95/EG.

Dieses Gerät hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen. Um diesen Zustand zu erhalten und um einen gefahrlosen Betrieb des Gerätes sicherzustellen, sind die in dieser Betriebsanleitung gegebenen Hinweise und Warnvermerke vom Anwender zu beachten.

HINWEIS

die Anleitung enthält aus Gründen der Übersichtlichkeit nicht sämtliche Detailinformationen zu allen Typen des Produkts und kann auch nicht jeden denkbaren Fall der Aufstellung, des Betriebes oder der Instandhaltung berücksichtigen.

Sollten Sie weitere Informationen wünschen, oder sollten besondere Probleme auftreten, die in der Anleitung nicht ausführlich genug behandelt werden, können Sie die erforderliche Auskunft telefonisch erfragen.

Außerdem weisen wir darauf hin, dass der Inhalt der Anleitung nicht Teil einer früheren oder bestehenden Vereinbarung, Zusage oder eines Rechtverhältnisses ist oder diese abändern soll. Sämtliche Verpflichtungen der Mütec Instruments GmbH ergeben sich aus dem jeweiligen Kaufvertrag, der auch die vollständige und allein gültige Gewährleistungsregelung enthält. Diese vertraglichen Gewährleistungsbestimmungen werden durch die Ausführungen der Anleitung weder erweitert noch beschränkt.

Der Inhalt spiegelt den technischen Stand zur Drucklegung wieder. Technische Änderungen sind im Zuge der Weiterentwicklung vorbehalten.

WARNUNG

Geräte der Zündschutzart "Eigensicherheit" verlieren ihre Zulassung, sobald sie an Stromkreisen betrieben wurden, die nicht den in der Prüfbescheinigung angegebenen Werten entsprechen. Der einwandfreie und sichere Betrieb dieses Gerätes setzt sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus. Das Gerät darf nur zu den in dieser Betriebsanleitung vorgegebenen Zwecken eingesetzt werden.

HAFTUNGSAUSSCHLUSS

Sämtliche Änderungen am Gerät, sofern sie nicht in der Betriebsanleitung ausdrücklich erwähnt werden, fallen in die Verantwortung des Anwenders.

Qualifiziertes PERSONAL

sind Personen, die mit Aufstellung, Montage, Inbetriebsetzung und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen, wie z. B.:

- Ausbildung oder Unterweisung bzw. Berechtigung, Geräte/Systeme gemäß des Standards der Sicherheitstechnik für elektrische Stromkreise, hohe Drücke und aggressive sowie gefährliche Medien zu betreiben und zu warten.
- Bei Geräten mit Explosionsschutz: Ausbildung oder Unterweisung bzw. Berechtigung, Arbeiten an elektrischen Stromkreisen für explosionsgefährdete Anlagen durchzuführen.
- Ausbildung oder Unterweisung gemäß des Standards der Sicherheitstechnik in Pflege und Gebrauch angemessener Sicherheitsausrüstung.

VORSICHT

Elektrostatisch gefährdete Baugruppen können durch Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Diese Spannungen treten bereits auf, wenn Sie ein Bauelement oder elektrische Anschlüsse einer Baugruppe berühren, ohne elektrostatisch entladen zu sein. Der Schaden, der an einer Baugruppe aufgrund einer Überspannung eintritt, kann meist nicht sofort erkannt werden, sondern macht sich erst nach längerer Betriebszeit bemerkbar.

MSK200ia-TE, MSK200ib-TE

Transmitter-Speisegerät entsprechend DIN EN 61508 – SIL2

Leistungsmerkmale:

- DuoTec®-System (2 Controller mit gegenseitiger Überwachung)
- Failsafe-Technologie für die Selbstüberwachung HART-
- Signalaufschaltung auf den Speisestromkreis
- 4 A/D-Wandler (16-Bit-, 12-Bit- und 10-Bit)
- 1 D/A-Wandler (15-Bit)
- 5 Selbstüberwachungsstromkreise
- 4 galvanisch getrennte Alarmausgänge (3x Relaiskontakt, 1x Transistor)
- 1 eigensicherer Transmitter-Speisestromkreis [Ex ia/ib] IIC
- 1 eigensicherer mA-Eingang [Ex ia/ib] IIC
- 1 analoger Ausgang für Konstantstrom oder Spannung
- 1 galvanisch getrennte RS232-Schnittstelle
- 1 galvanisch getrennte RS485-Schnittstelle
- 24V AC/DC Hilfsenergie

Kennzeichnung nach Richtlinie 94/9/EG:

0158	II (2) G
	0158

Kennzeichnung der Zündschutzart:

	נב בא ומן ווט
zugehöriges elektrisches Betriebs- mittel nach Europanorm	
Zündschutzart	
Betriebsmittelgruppe	

Sicherheitshinweise

Das Gerät muss außer Betrieb genommen und gegen unbeabsichtigten Betrieb gesichert werden, wenn angenommen werden muss, dass ein gefahrloser Betrieb nicht mehr möglich ist. Gründe für diese Annahme können sein:

IE Evial IIC

- sichtbare Beschädigung des Gerätes
- Ausfall der elektrischen Funktion
- längere Lagerung bei Temperaturen über 85 °C
- schwere Transportbeanspruchung

Bevor das Gerät wieder in Betrieb genommen wird, ist eine fachgerechte Stückprüfung nach DIN EN 61010, Teil 1 durchzuführen. Diese Prüfung sollte unbedingt beim Hersteller erfolgen. Reparaturarbeiten an Ex-Geräten dürfen nur unter Beachtung von §9 der Ex-Verordnung (Elex V) durchgeführt werden.

Geräte mit eigensicheren Stromkreisen dürfen niemals an nicht eigensicheren Stromkreisen betrieben werden. Sollen Ex-Geräte an nicht eigensicheren Stromkreisen betrieben werden, so sind diese besonders zu kennzeichnen und die Ex-Aufschriften müssen unbedingt entfernt werden, damit diese Geräte später nicht wieder für eigensichere Stromkreise Verwendung finden. Eine spätere Nachprüfung der Geräte auf Einhaltung der Bedingungen für den Ex-Schutz ist auch beim Hersteller nur mit einem unverhältnismäßig hohen Aufwand möglich und wird deshalb in der Regel abgelehnt.

Bestimmungsgemäßer Einsatz

Das Transmitter-Speisegerät **MSK200ia/ib-TE** dient zur Speisung eines eigensicheren 2-Leiter-Transmitters oder auch als Trennverstärker für ein 0/4 – 20 mA Signal. Der Transmitter-Speisestromkreis an den Klemmen **KL21/22 + KL23/24** sowie der mA-Eingangsstromkreis an den Klemmen **KL17 + KL18** entsprechen der Zündschutzart "Eigensicherheit" der Kategorie "ia" bzw. "ib".

Für den Anschluss eines eigensicheren HART-Terminals zur Parametrierung oder zum Testen des 2-Lt.-Transmitters steht eine Frontbuchse als Verbindungselement zum eigensicheren Speisestromkreis zur Verfügung.

Der höchstzulässige maximale Umgebungstemperaturbereich von -20 °C bis +60 °C darf nicht überschritten werden.

Das Transmitter-Speisegerät **MSK200i..-TE** ist ein zugehöriges elektrisches Betriebsmittel der Zündschutzart [Ex ia] IIC oder [Ex ib] IIC und muss immer außerhalb explosionsgefährdeter Bereiche betrieben werden. Nur der zuvor schon aufgelistete Speise- bzw. Eingangsstromkreis darf in den explosionsgefährdeten Bereich geführt und mit einem bescheinigten eigensicheren Stromkreis verbunden werden. Vor der Inbetriebnahme ist der Nachweis der Eigensicherheit für die korrekte Zusammenschaltung des **MSK200i..-TE**-Stromkreises mit dem Stromkreis des angeschlossenen Betriebsmittels einschließlich der Leitungen zu führen.

Die EG-Baumusterprüfbescheinigung und die Bestimmungen der EN 60079-14: 2011-10 sind zu beachten.

Installation und Inbetriebnahme

Der Einbau des Transmitter-Speisegerätes **MSK200i..-TE** hat so zu erfolgen, dass die Luftstrecken von blanken Teilen eigensicherer Stromkreise zu den metallischen Gehäuseteilen mindestens 3 mm und zu den blanken Teilen der nicht eigensicheren Stromkreise mindestens 6 mm betragen.

Anschlussteile für die äußeren eigensicheren Stromkreise sind so anzuordnen, dass entsprechend der EN 60079-11 die blanken Teile mindestens 50 mm von Anschlussteilen oder blanken Leitern nicht eigensicherer Stromkreise entfernt sind.

Die Kontaktbelegungen der Messerleiste mit den eigensicheren Stromkreisen und den nicht eigensicheren Stromkreisen sind auf dem Typenschild deutlich gekennzeichnet.

Die Montage/Demontage, die Installation, der Betrieb und die Instandhaltung dürfen nur durch qualifiziertes Personal im Sinne der Automatisierungsindustrie unter Beachtung der einschlägigen Vorschriften und der **MSK200i..-TE**-Betriebsanleitung durchgeführt werden. Bei der Installation sind die technischen Daten und die Anschlusswerte zu beachten.

Für Dokumentierung und Nachweis der ausgewählten und eingestellten Geräteparameter steht nach Abschluss der Einstellarbeiten der Befehl *Konfiguration speichern/drucken* zur Verfügung.

Über die Frontbuchse kann eine HART-Signalanbindung an den eigensicheren Speisestromkreis vorgenommen werden.

Die Alarmüberwachung erfolgt mit 2 Relaiskontakt- und 2 Transistor-Ausgängen. Zusätzlich steht ein weiterer Relaiskontaktausgang für die Signalisierung der Sicherheitsfunktion zur Verfügung. Alle Ausgangsstromkreise sind untereinander und von der Hilfsenergie galvanisch getrennt.

Der Analogausgang ist für einen Konstantstrom von 0/4-20 mA ausgelegt. Durch die Aufschaltung eines Shuntwiderstandes von 500 Ω mit einem Jumper kann am Ausgang auch eine Spannung von 0/2-10 V abgegeben werden.

Die RS232-Schnittstelle in der Front und die RS485-Schnittstelle an der Messerleiste sind galvanisch von den anderen Schaltungsteilen und der Hilfsenergie galvanisch getrennt.

Das mit zwei sich gegenseitig überwachenden 16-Bit-Controllern (DuoTec[®]-System) ausgestattete Transmitter-Speisegerät erfüllt mit weiteren Maßnahmen (Failsafe-Technologie) alle Sicherheitsanforderungen gemäß der EN 61508 für SIL2.

Konfigurierung, Parametrierung und Kalibrierung lassen sich über die RS232- oder RS485-Schnittstellen mit dem bedienungsfreundlichen PC-Programms WINSMART' einfach, übersichtlich und schnell durchführen.

Versorgungsstromkreis (Klemmen 3 und 4 Bemessungsspannung	4 oder Kontakt KT-B4 und I	(T-B5) DC 19	9 30	V
max. Spannung	Um	AC 18 AC/DC	250 250	V V
nicht eigensicherer RS485-Schnittstellen nicht eigensicherer RS232-Schnittstellen Bemessungsspannung Bemessungsstromstärke max. Spannung	stromkreis (Kontakt KT-B stromkreis (Anschluss Fro Um	1 und KT-B2) ontbuchse) DC AC/DC	6 100 48	V mA V
nicht eigensicherer Relaiskontaktstromk nicht eigensicherer Relaiskontaktstromk nicht eigensicherer Relaiskontaktstromk Schaltspannung Schaltstromstärke oder	reis 1 (Klemmen 1 und 2) reis 2 (Klemmen 5 und 6) reis 3 (Klemmen 9 und 10)	DC	30 1	V A
Schaltspannung Schaltstromstärke max. Spannung	Um	AC AC/DC	125 0,5 125	V A V
nicht eigensicherer Digital-Ausgangsstro Bemessungsspannung Bemessungsstromstärke max Spannung	omkreis (Klemmen 7 und 8) DC AC/DC	28 50 125	V mA V
nicht eigensicherer Analog-Ausgangsstr Bemessungsspannung Bemessungsstromstärke	omkreis (Klemmen 11 und	12) DC	20	V mA
max. Spannung	Um	AC/DC	125	V
eigensicherer Speisestromkreis (Klemme Schutzniveau EEx ia IIC bei Typ MSK200ia- Trapezförmige Kennlinje	n 21, 22, 23 und 24) TE oder EEx ib IIC bei Typ	MSK200ib-TE	E	
Spannung Stromstärke Leistung max. äußere Induktivität max. äußere Kapazität	Uo Io Po Lo Co	DC	25,8 65 420 4 83	V mA mW mH nF
eigensicherer HART-Stromkreis (Anschlus Schutzniveau EEx ia IIC bei Typ MSK200ia- Spannung Stromstärke Leistung wirksame innere Kapazität wirksame innere Induktivität	ss Frontbuchse) TE oder EEx ib IIC bei Typ Ui Ii Pi Ci Li	MSK200ib-TE DC	2 30 21 10 1	V mA mW nF µH
eigensicherer Speisestromkreis (Klemme mit HART-Terminal-Aufschaltung an der Fr Schutzniveau EEx ia IIC bei Typ MSK200ia- Trapezförmige Kennlinje	n 21, 22, 23 und 24) ontbuchse TE oder EEx ib IIC bei Typ	MSK200ib-TE	E	
Spannung Stromstärke Leistung max. äußere Kapazität max. äußere Induktivität	Uo Io Po Co Lo	DC	25,8 95 441 73 4	V mA mW nF mH
eigensicherer mA-Eingangsstromkreis (K Schutzniveau EEx ia IIC bei Typ MSK200ia-	(lemmen 17 und 18) TE oder EEx ib IIC bei Typ	MSK200ib-TE	E	
Zum Anschluss eines eigensicheren Stromk Spannung Stromstärke Leistung innere Kapazität innere Induktivität	reises mit folgenden Höchs Ui Ii Pi Ci Li	stwerten: DC vernachlässi vernachlässi	30 110 700 gbar gbar	V mA mW

Nr.	Fehlerquelle/ Fehlerursache	Alarm - LED	Analogausgang im Fehlerfall (programmierbar)	Alarme (program- mierbar)	Wiederinbetrieb- nahme nach Fehlerbehebung	Bemerkung
1	EEPROM: Prüfsumme fehlerhaft	Dauerlicht	Alarmwer t oder Momentanwert	lim-prio , an, aus limit	MSK200 muss neu konfiguriert, para- metriert und kali- briert werden	Parametertabelle im RAM wird mit Defaultwerten geladen
2	Master-Controller: Fehler im RAM- /EPROM- Speicher	Dauerlicht	Alarmwert oder eingefrorener Wert	lim-prio , an aus limit	automatisch (nach Systemreset)	Parametersatz oder Programm beschädigt
3	Slave-Controller: Kommunikation, RAM- oder CPU defekt	Dauerlicht	Alarmwert oder eingefrorener Wert	lim-prio , an aus limit	automatisch	
4	Slave-Controller: 5V-Versorgung fehlerhaft	Dauerlicht	Alarmwer t oder Momentanwert	lim-prio , an aus limit	automatisch	bei ε 4 % Ab- weichung vom Referenzwert
5	Master-Controller: 3V3-Versorgung fehlerhaft	Dauerlicht	Alarmwer t oder Momentanwert	lim-prio , an aus limit	automatisch	bei ε 4 % Ab- weichung vom Referenzwert
6	Analogausgang: Signalabweichung	Dauerlicht	Alarmwer t oder Momentanwert	lim-prio , an aus limit	automatisch	parametrierbar : ab ε 0,2 %
7	A/D-Converter: Signalabweichung	Dauerlicht	Alarmwer t oder Momentanwert	lim-prio , an aus limit	automatisch	parametrierbar : ab ϵ 0,2 %
8	mA- oder Speise- stromkreis: MIN- Signalunter- schreitung	Dauerlicht	Alarmwert oder eingefrorener Wert	lim-prio , an aus limit	automatisch	parametrierbar : ab 0 mA
9	mA- oder Speise- stromkreis: MAX- Signalunter- schreitung	Dauerlicht	Alarmwert oder eingefrorener Wert	lim-prio , an aus limit	automatisch	parametrierbar : bis 22 mA
10	Transmitter- Speisestromkreis fehlerhaft	Dauerlicht	Alarmwer t oder Momentanwert	lim-prio , an aus limit	automatisch	bei ≥ 20 % Ab- weichung vom Referenzwert
11	Alarmausgänge Relaiskontakt Rel1, Rel2 oder Rel3 defekt	Dauerlicht	Alarmwer t oder Momentanwert	lim-prio , an aus limit	automatisch	Parallelkontakt des Relais dient als Referenz !

Generell bleibt bei einem bestehenden Fehler der Alarm für Wartungsbedarf, signalisiert durch die Alarm-LED und Relais-3, dauerhaft anstehen. Im **Diagnosemanager** wird die Fehlerquelle als **aktueller Fehler** und im **Fehlerspeicher** angezeigt. Ein kurzzeitiger und nicht mehr vorhandener Fehler wird durch eine blinkende Alarm-LED in der Gerätefront und im **Diagnosemanager** im **Fehlerspeicher** signalisiert. Jeder Fehlerfall wird somit erfasst und im **Diagnosemanager** kann man zwischen einem vorliegenden und einem nicht mehr vorliegenden Fehler unterscheiden.

ANALOGEINGANG (AE)

Parametrierbares Filter 1. Ordnung von (0,1 - 99,9)s!

mA-Messeingang AE

mA-Messbereich: Messspanne: Eingangswiderstand: 0 22 mADC frei konfigurierbar 51 ∧ + 2x UD

SPEISESTROMKREIS (SP)

Parametrierbares Filter 1. Ordnung von (0,1 - 99,9)s!

Speisestromkreis SP

Umax:	22,4 V bei 4 mA Laststrom
Umin:	17,3 V bei 20 mA Laststrom
Imax:	24 mA
Pmax:	360 mW

ANALOGAUSGANG (AA)

Parametrierbares Filter 1. Ordnung von (0,1 - 9,9)s! Galvanische Trennung zwischen Eingang, Analogausgang und Hilfsenergie!

Max. Bereich: Standardbereich: Bürde: Genauigkeit: Bürdeneinfluss: Anstiegszeit: Konstantstrom 0...22 oder 22...0 mA 0/4-20 mA max. 500 Ohm bei 20 mA 0,02 % vom Endwert < 0,005 % < 150 ms

Spannung 0...11 oder 11...0 V 0/2-10 V min. 50 kOhm 0,02 % vom Endwert 0,5 % bei R∟=100 kΩ < 150 ms

KONTAKTAUSGÄNGE (REL1, REL2), TRANSISTORAUSGANG (DA)

Bei Geräten mit eigensicheren Stromkreisen dürfen über die Kontakt- und Transistorausgänge nur Geräte mit Betriebsspannungen unter 250 V angeschlossen werden!

Die Alarmzustände werden mit gelben LED's angezeigt!

Alarmanzahl: Einstellung: Genauigkeit: Alarmtyp: Alarmausgang: Alarmverzögerung: Schalthysterese: Betriebsart: Alarmfunktion:	3 unabhängig einstellbare Grenzwerte physikalischer Wert im WINSMART®-Programm wie Messwertgenauigkeit beliebig konfigurierbar 2x Relaiskontakt und 2x Transistorausgang frei konfigurierbar von 0 9,9 s frei konfigurierbar von 0 99,9 % Arbeits- oder Ruhestromprinzip Eingangssignalüberwachung und Wartungsbedarfsmeldung
Kontaktausgänge REL1/REL2 Kontakt: Schaltleistung: Schaltspannung: Schaltstrom: Minimale Kontaktspannung: Minimaler Kontaktstrom: Kontaktmaterial: Relais-Typ:	Öffner oder Schließer (entsprechend Jumperstellung) max. 62,5 VA bzw. max. 30 W max. 125 V AC oder 110 V DC max. 1 A 10 mVDC 10 μA AG Pd + 10 μAu nach IEC 947-5-1 bzw. EN60947
Transistorausgang DA Schaltleistung: Schaltspannung: Schaltstrom:	< 1,4 W < 28 VDC < 50 mA

KONTAKTAUSGANG (REL3) für WARTUNGSBEDARFSMELDUNG

Bei Geräten mit eigensicheren Stromkreisen dürfen über den Relaiskontakt nur Geräte mit Betriebsspannungen unter 250 V angeschlossen werden!

Der Alarmzustand wird mit einer roten LED angezeigt!

Betriebsart:	Ruhestromprinzip
Alarmfunktion:	Wartungsbedarfsmeldung
Kontaktstellung:	im Gutzustand geschlossen
Schaltleistung:	max. 62,5 VA bzw. max. 30 W
Schaltspannung:	max. 125 V AC oder 110 V DC
Schaltstrom:	max. 1 A
Minimale Kontaktspannung:	10 mVDC
Minimaler Kontaktstrom:	10 μA
Kontaktmaterial:	AG Pd + 10 μAu
Relais-Typ:	nach IEC 947-5-1 bzw. EN60947

SCHNITTSTELLEN (COM, RS485, HART)

Galvanische Trennung der COM und RS485 zur Hilfsenergie und allen anderen Schaltungsteilen!

RS232/COM:	
RS485:	
Baudrate:	
Geräteadresse:	
HART-Signal:	

über Frontbuchse mit Mütec-Schnittstellenkabel Halbduplex, ohne Terminierung 9600 bps 1-248 auf Speisestromkreis (0 ... 3 kHz Bandbreite)

VERSORGUNGSSPANNUNG

Versorgungsspannungsanzeige: grüne LED signalisiert Gutzustand Versorgungsspannungsbereich: 19 ... 30 VDC oder 18 ... 28 VAC

Leistungsaufnahme

Speisetrenner:	1,6 W (bei 24VDC und 4 mA im Analogausgang)
	2,1 W (bei 24VDC und 20 mA im Analogausgang)
Trennverstärker:	1,1 W (bei 24VDC und 4 mA im Analogausgang)
	1,4 W (bei 24VDC und 20 mA im Analogausgang)

< 0,05 % vom Endwert

< 0,025 % vom Endwert

ALLGEMEINE DATEN

Messwertgenauigkeit

Maximal: Typisch:

Temperaturkoeffizient

Maximal: Typisch:

< 0,01 %/K < 0,005 %/K

Galvanische Trennung

Eingang/Ausgang/Versorgung: 300 Veff (Bemessungsisolationsspannung, Überspannungskategorie II, Verschmutzungsgrad 2, sichere Trennung nach EN 61010, EN 50178); 2,5 kV AC Prüfspannung (50 Hz, 1 min.); 375 V (Scheitelwert nach EN 60079-11) 375 V (Scheitelwert nach EN 60079-11)

Eingang/Versorgung: Umgebungsbedingungen

Eingang/Ausgang:

Zulässige Temperatur: Lagerung/Transport: Zul. Luftfeuchte (bei Betrieb): -20 °C ... +60 °C -30 °C ... +80 °C 10 % ... 95 % r.F. ohne Betauung

Schraubsteckverbinder/grau mit 2,5 mm²

Schraubsteckverbinder/blau mit 2,5 mm²

Elektrischer Anschluss

KL-1 bis KL-12: KL-17 bis KL-24: KL-B1 bis KL-B5:

Gehäuse

Material:

Gewicht:

Bauform:

PBT IP20 Schutzart: Brennbarkeitsklasse: V0 nach UL 22,5 mm x 114,5 mm x 99 mm ohne Klemmen Maße (BxLxH): 250 g Klemmengehäuse zur Tragschienenmontage Montage/Einbaulage:

TBUS-Verbinder mit 2,5 mm²

Aufgrund der Leistungsaufnahme des MSK200i..-TE wird bei der Verwendung als Speisetrenner unbedingt im Schaltschrank ein senkrechter Einbau empfohlen!

Maßnahmen für die Selbstüberwachung

Messeingang:	1 Überwachungsmesskreis mit einstellbarer Toleranz
Analogausgang :	1 Überwachungsmesskreis mit einstellbarer Toleranz
Versorgungsspannungen:	2 Überwachungsmesskreise
Transmitter-Speisestromkreis:	1 Überwachungsmesskreis
Relais (REL1 REL3):	indirekte Kontaktüberwachung
Wartungsbedarf:	Dauerlicht der roten LED und REL3-Kontakt geöffnet

Eine Wartungsbedarfsmeldung erfolgt immer durch das Relais REL3, das im Ruhestromprinzip betrieben wird. Der im Gutzustand geschlossene Relaiskontakt bietet die Möglichkeit der Reihenschaltung mit weiteren REL3-Kontakten anderer Geräte und damit eine Sammelalarmüberwachung. Zusätzlich können auch die Relais REL1 und REL2 sowie die Transistorausgänge DA1 und DA2 an der Alarm-Signalisierung beteiligt werden.

KONFORMITÄT

Ex-Richtlinie (ATEX): EMV-Richtlinie 2004/108/EG: EN 60079-0, EN 60079-11, EN 60079-26 EN 61000-6-2, EN 61000-6-4, EN 61326-1

MONTAGE

Das Gerät darf nur außerhalb eines explosionsgefährdeten Bereiches errichtet werden!

Das ME-MAX-Gehäuse ist mit einem 5-poligen TBUS-Verbinder/Tragschienen-Connector kombinierbar. Über den in die Hutschiene eingerasteten TBUS-Verbinder kann die RS485-Schnittstelle und die Versorgungsspannung komfortabel durchverdrahtet werden. Die TBUS-Verbindung entsteht selbstaufbauend im Raster der beteiligten Geräte. Ein aufwendiges Vorprojektieren oder ein Nacharbeiten der TBUS-Verbindung vor Ort gehört damit der Vergangenheit an.

Technische Daten:	5-poliger Connector im Raster 3,81mm 8 A maximale Kontaktbelastung hohe Kontaktgüte durch Goldauflage Montage in Hutschienen NS 35/7,5 bzw. NS 35/15	
Wichtiger Hinweis:	Das Gerät darf nur leistungslos auf den TBUS-Verbinder aufgerastet oder davon getrennt werden!	

TBUS-VERBINDER aufrasten ---▶ GEHÄUSE schwenken ---▶ GERÄT montiert !

Mit Hilfe des **WINSMART**[®]-Programmes und dem Befehl "Konfiguration drucken" kann für den MSK200 ein Konfigurationsprotokoll erstellt werden. Als gerätespezifische Kennungen werden die Geräteadresse, die Tag-No., die Serial-No. sowie die Versions-Nr. der Gerätesoftware protokolliert. Von dem im Gerät gespeicherten und maximal 2000 ASCII-Zeichen umfassenden Kommentartext werden die ersten 60 Zeichen im Protokoll ausgedruckt. Alle Parameter für Eingangs-, Ausgangs- und Alarmeinstellung sowie die vom Anwender definierten Toleranzabweichungen der Überwachungsmesskreise werden dokumentiert, wie auch das Verhalten der Relais- und Transistorausgänge und des Analogausgangs im Fehlerfall.

MÜTEC GmbH	Konfiguratio	onsprotokoll für MS	SK-200	07-05	-2012
TAG No.:			Sc	ftwareversion	4 01
Serial No.:	Muster			Geräteadresse:	1
MEBWERT					
Meßberei	chsanfang		4.000	mA	
Meßberei	chsende		20.000	mA	
Filterze	it		. 0.5	S	
Meßwertüber	wachung				
MIN - We	rt		. 3.500	mA	
MAX - We:	rt		. 20.500	mA	
Physikalisc	ne Darstellung	1			
Meßberei	chsanfang		4.00	mA	
Meßberei	chsende		20.00	mA	
AUSGANG					
Bereichsa	anfang		. 4.0	mA	
Bereichse	ende		. 20.0	mA	
MIN-Begre	enzung		. 3.6	mA	
MAX-Begre	enzung		. 21.0	mA	
Alarmwert			. 22.0	mA	
Filterze	it		. 0.5	S	
ATARM 1					
Alarmtyp			MTN-D]	arm	
Funktion			Ruhest	rom	
Alarmwert			6.00	mA	
Hysterese			1.0	8	
Alarmver	zögerung		0.5	S	
ALARM 2	jj			4. — 17	
Alarmtyp			MAX-Al	arm	
Funktion.			Ruhest	rom	
Alarmwert			18.00	mA	
Hysterese			1.0	8	
Alarmverz	ögerung		0.5	S	
ALARM 3					
Alarmtyp.			MIN-Al	arm	
Funktion.	• • • • • • • • • • • • • • • •		Ruhest	rom	
Alarmwert			8.00	mA	
Hysterese	••••••••••••		1.0	8	
Alarmverz	ögerung	• • • • • • • • • • • • • • • • • • • •	0.5	S	
Zeitfenst	er für Gradie	entenalarm	20	S	
Überwachungs	maßnahmen				
mA-Eingar	ng - maximale	Toleranz	+/- 5 0	8	
Analogaus	sgang - maxima	ale Toleranz	+/- 5.0	00	
3	, ,				
Analogausgar	ngs- und Alarn	nausgangs-Steuerung	im Fehle	rfall	
Fehlerque	ellen:	Analogausgang	Relais1	Relais2 Logik1	
Analogaus	sgang	Alarmwert	limit	limit an	
mA-Eingar	1g	Alarmwert	lim-pri	o lim-prio aus	S
Minimaler	mA-Wert	Alarmwert	lim-pri	o lim-prio aus	
Maximaler	mA-Wert	Alarmwert	lim-pri	o lim-prio aus	
TransmS	peisestrom	Alarmwert	lim-pri	o lim-prio aus	
Relais 1,	2,3	momentaner Wert	lim-pri	o lim-prio an	199924-10
Interner	Geratefehler	momentaner Wert	lim-pri	o 11m-prio lim-	-prio

5.2 Berechnung des zulässigen Leitungswiderstandes für den Ausgangsstromkreis

Daten des Analogausgangs (AA) für Konstantstrom:

Max. Bereich:
Standardbereich:
Bürde:
Genauigkeit:
Bürdeneinfluss:

0...22 oder 22...0 mA 0/4-20 mA max. 500 Ohm bei 20 mA 0,02 % vom Endwert <0,005 %

Die maximale Bürde für den Analogausgang ergibt sich als Summe aus den Widerständen der Hinund Rückleitung sowie dem Eingangswiderstand (Shunt) der nachfolgenden Baugruppe:

RBürde = 2x RL + RShunt [0] Für

den Leitungswiderstand gilt:

```
R_{L} = I x \varrho x A^{-1}[0]
```

Q = 0,0178 [0 mm² m⁻¹] A = 0,25 x d² x U [mm²]

Berechnung der Leitungslänge (Entfernung):

I = 0,5 (RBürde - RShunt) X Q^{-1} X A [m]

Rshunt [0]	LDurchmesser [mm]	LQuerschnitt [mm ²]	L _{Länge} [m]	[km]
100	0,6	0,283	3179	3,18
	0,7	0,385	4325	4,33
	0,8	0,502	5640	5,64
	0,9	0,636	7146	7,15
	1,0	0,785	8820	8,82
Rshunt [0]	LDurchmesser [mm]	L _{Querschnitt} [mm²]	LLänge [m]	[km]
200	0,6	0,283	2385	2,39
	0,7	0,385	3244	3,24
	0,8	0,502	4230	4,23
	0,9	0,636	5360	5,36
	1,0	0,785	6615	6,62
RShunt [0]	LDurchmesser [mm]	L _{Querschnitt} [mm²]	LLänge [m]	[km]
300	0,6	0,283	1590	1,59
	0,7	0,385	2163	2,16
	0,8	0,502	2820	2,82
	0,9	0,636	3573	3,57
	1,0	0,785	4410	4,41

Leitungslängen in Abhängigkeit von Leitungsdurchmesser und Eingangswiderstand:

5.3 Blockschaltbild

5.4 HART-Signalaufschaltung

Klemme	Transmitter-Speisekreis	Klemme	mA-Eingang
KL21 KL22	(+) T	KL17	(+) 0/4-20mA
KL23 KL24	<u>(-)</u>	KL18	(-)
Klemme	Analogausgang/mA	Klemme	Analogausgang/V (keine Konstantspannung!)
KL11	(+) 0/4-20mA	KL11	(+) 0/2-10U
KL12	<u>(-)</u>	KL12	_(-)
Klemme	Relaiskontaktausgänge	Klemme	Versorgungsspannung
KL1 KL2		KL3 KL4	
KL5 KL6	TP2 REL2	КТ-В5 КТ-В4	
KL9 KL10	REL3	KT-B3 KL19 KL20	 I PE
Klemme	Digitalausgang	Klemme	RS485-Schnittstelle
KL8 KL7		KT-B2 KT-B1	A B

Jumper JP1 und JP2:

Jumper JP3:

Jumper JP4 und JP5:

Die Jumper JP4 und JP5 stellen die Verbindung zur Versorgungsspannung über die Klemmen KT-B4 und KT-B5 des TBUS-Verbinders in der Tragschiene oder den Klemmleistenkontakten KL3 und KL4 her.

Jumper JP1 beim Relaiskontakt REL-1 bzw. Jumper JP-2 beim Relaiskontakt REL-2 bestimmt die Kontaktfunktion als Öffner oder Schließer.

Mit Jumper JP3 wird der Analogausgang von Konstantstrom (mA) auf Spannung (V) umgeschaltet.

6.0 Konfigurationsprogramm

WINSMART ^(R) - Konfi	gurationsprogramm
Version 7.0 Release 22	(c) 1995-2011 MÜTEC GmbH
Programm <u>b</u> eenden	Gerätetyp O MTP-200
Schnittstelle	MSK- <u>V</u> ersion: 4.01
MSK-Daten <u>e</u> inlesen	Meßeingang
MSK programmieren	Analoga <u>u</u> sgang
X Kalibrierwerte überschreiben	Alarmausgänge
PC-Schnittstelle: COM4 -	Überwachungsmaßna <u>h</u> men
MSK-Adresse:	Kommentarspeicher
Angeschlossene MTP/MSK-Geräte	Diagnosemanager
Adressen suchen	Online-Darstellung
Adresse: Serial No: TAG No:	MSK-Kennung
1 08-32/15 MEC12-15	Serial No: 08-32/15
	TAG No: MEC12-15
	A <u>d</u> resse: 1 ▼

Die obige Abbildung zeigt die Eröffnungsmaske des WINSMART-Konfigurationsprogramms mit der Versions- und Release-Nummer. Mit dem Befehl **Datei** kann auf bestehende Konfigurationsdateien zugegriffen werden, eine Abspeicherung in einen Ordner oder auch der Ausdruck einer Konfiguration erfolgen.

Von den 3 Bedienungsebenen im WINSMART-Programm sind 2 durch Passwörter gesichert, deren Zugang mit dem Befehl **Zugriffsrechte** ermöglicht wird.

Besondere Bedeutung hat die Bedienungsebene für die Kalibrierung der Messeingänge und des Analogausgangs. Erst nach Eingabe des Passwortes und des Befehls **Kalibrierung** wird der Zugang auf eine der beiden Masken möglich.

Für die Kommunikation mit dem WINSMART-Programm muss als **PC-Schnittstelle** die COM- und **MSK-Adresse** im Feld **Schnittstelle** eingetragen werden. Ein Gerät mit unbekannter Adresse lässt sich mit Hilfe der Funktion **Adressen suchen** identifizieren. Nach dem Auffinden der Geräteadresse werden **Serial-No.** und **TAG-No.** angezeigt.

Das WINSMART-Konfigurationsprogramm unterstützt neben dem MSK200 auch den MTP200.

Für Informationen über den Universal-Messumformer MTP200 wird auf das bestehende Handbuch verwiesen und hier nicht weiter eingegangen.

Der Zugriff auf die konfigurier- und parametrierbaren Ein- und Ausgänge erfolgt über separat gekennzeichnete Buttons. In der Maske **Überwachungsmaßnahmen** können der Analogausgang und die Alarmausgänge mit speziellen Funktionen verknüpft werden, die nur im Fehlerfall aktiviert werden. Ein **Diagnosemanager** informiert über den Zustand des Gerätes und kann zwischen einem nicht mehr vorliegenden und einem vorliegenden Fehler unterscheiden.

In der Maske **Online-Darstellung** sind der Zustand der Eingangs- und des Ausgangssignals sowie die Alarmzustände übersichtlich dargestellt.

atei Zugriffsrechte Kalibrierung	Konfiguration Language
Konfiguration laden Konfiguration speichern Konfiguration drucken	RT ^(R) - Konfigurationsprogramm (c) 1995-2011 MÜTEC GmbH
Kommentar drucken	Gerätetyp OMTP-200 MSK-200
Programm beenden	HCK Marriage 4.01

6.1.1 Datei Konfiguration laden

Der in einer Datei mit der Erweiterung *.**MSK** auf der Festplatte abgespeicherte Parametersatz wird in das WINSMART-Konfigurationsprogramm geladen.

Damit lässt sich schnell und sicher ein gespeicherter Parametersatz in andere Geräte duplizieren.

6.1.2 Datei Konfiguration speichern

Die MSK200-Parameter des Konfigurationsprogramms werden in einer Datei mit der Erweiterung ***.MSK** auf der Festplatte abgespeichert. Für eine Wiederherstellung einer Konfiguration muss die Datei in das WINSMART-Programm geladen und anschließend mit **MSK programmieren** in den MSK200 übertragen werden.

6.1.3 Datei Konfiguration drucken

Alle MSK200-Parameter des Konfigurationsprogramms sowie die ersten 60 Zeichen des Kommentartextes werden als Protokoll mit Datum und den Gerätekenndaten auf einer DIN-A4-Seite ausgedruckt. Dazu wird der unter WINDOWS zur Verfügung stehende Drucker verwendet. Die Schriftart und das Format des Ausdrucks sind fest vorgegeben und können vom Anwender nicht verändert werden.

6.1.4 Datei 🗆 Kommentar drucken

Der im Gerät gespeicherte und maximal 2000 ASCII-Zeichen umfassende Kommentartext wird als Protokoll mit Datum und den Gerätekenndaten auf einer DIN-A4-Seite ausgedruckt. Dafür wird der unter WINDOWS zur Verfügung stehende Drucker verwendet. Die Schriftart und das Format des Ausdruckes sind fest vorgegeben und können vom Anwender nicht verändert werden.

6.1.5 Datei 🗆 Programm beenden

Nach dem Anklicken des Buttons **Programm beenden** kommt die Aufforderung zur Bestätigung mit **OK** oder zum **Abbrechen** des Vorgangs.

6.1.6 Zugriffsrechte Passwort eingeben

Das entsprechende Passwort gibt den Zugang zu den sonst gesperrten Masken des Konfigurationsprogramms frei.

MS MS	K - Hauptmenü		
Datei	Zugriffsrechte Kalibrierung K	onfiguration Language	
	Paßwort eingeben	T - Konfigurat	tionsprogramm
	Paßwort ändern	Paßwortebene 1 Paßwortebene 2	(c) 1995-2011 MÜTEC GmbH
	Programm <u>b</u> eenden		C MTP-200 MSK-200

Das Konfigurationsprogramm unterscheidet 3 Zugangsebenen, wovon 2 durch Passwörter geschützt sind. Der offene Bereich beinhaltet Masken, mit denen keine Funktions- oder Parameteränderungen verbunden sind. Die Zugangsebene-1 mit Passwort umfasst alle Masken mit Parametereinstellungen.

Erst mit der Vergabe eines Passwortes wird der anfangs freie Zugang zu dieser Ebene gesperrt.

Die Passwortebene 2 beinhaltet den Zugang in alle Masken für die Kalibrierung. Dieser Zugriff ist schon durch ein vom Hersteller vergebenes Passwort (5180) gegen unbefugten Zugang gesperrt und kann durch die Vergabe eines eigenen Passwortes ersetzt werden. Das Passwort 2 berechtigt auch den Zugriff auf alle Parameter und Funktionen des Gerätes.

6.1.7 Zugriffsrechte 🗆 Passwort ändern 🗆 Passwortebene 1

Daßworte	×	
Paßwortebene 1 (alle Einstellungen au Altes Paßwort: Neues Paßwort: Neues Paßwort (Bestätigung):	Ber Kalibrierung)	Kein Eintrag bei der ersten Vergabe des Passwortes!
Speichern	Abbrechen	

Die Passwortebene 1 mit allen Parametereinstellungen soll den Zugangsberechtigten wie Wartungspersonal oder Servicetechniker den Zugriff auf alle parametrierbaren Einstellungen ermöglichen. Das Passwort mit maximal 20 alphanumerische Zeichen muss in die beiden bezeichneten Felder der Maske eingetragen und abgespeichert werden.

6.1.8 Zugriffsrechte 🗆 Passwort ändern 🗆 Passwortebene 2

Paßworte		×	
Paßwortebene 2 (K. <u>A</u> ltes Paßwort: Neues Paßwort: Neues Paßwort (alibrierung)		5180-Eintrag für die erstmalige Änderung des bestehenden Passwortes!
ĺ	Speichern	Abbrechen	

Die **Passwortebene 2** umfasst neben Parameter- und Kalibriereinstellungen die Funktion **Kalibrier**werte überschreiben und sollte nur im Prüffeld mit großer Sorgfalt vorgenommen werden. Die **Passwortebene 2** ist durch ein vom Hersteller vergebenes Passwort (**5180**) gesperrt. Das neue Passwort darf maximal 20 alphanumerische Zeichen umfassen und muss in die beiden bezeichneten Felder der Maske eingetragen und abgespeichert werden.

6.1.9 Kalibrierung 🗆 Eingang kalibrieren

MS MS	K - Hauptmenü	No.	
Datei	Zugriffsrechte	Kalibrierung Konfiguration I	anguage
		Eingang kalibrieren	gurationsprogramm
	Version 7.0 R	Ausgang kalibrieren	(c) 1995-2011 MÜTEC GmbH

Eine **Kalibrierung** ist für das analoge Eingangs- und Ausgangssignal notwendig. Vor Beginn der Kalibrierung ist der Parametersatz vom MSK200 in das WINSMART-Programm einzulesen.

Schnittstelle		Vor Beginn der Kalibrierung sind
MSK-Daten	einlesen	die Parameter aus dem Gerät ins WINSMART-Programm einzulesen!
MSK program	nmieren	
🔀 Kalibrierwerte <u>ü</u> ber	schreiben	Für die Übertragung neuer Kalibrierwerte aktivieren!
PC-Schnittstelle:	COM4 💌	L
MSK-Adresse:	1 💌	
Eingang kalibrieren TA	G No: MEC12-15	
Stromsignal		
<u>1</u> . Kalibrierpunkt 4	.000 mA Einlese	
<u>2</u> . Kalibrierpunkt 2	0.000 mA Einlesen	n
<u>2</u> . Kalibrierpunkt 2 Speisestromkreis	0.000 mA Einlesen	n
<u>2</u> . Kalibrierpunkt 2 Speisestromkreis bei 20 mA	0.000 mA Einlese Speisestrom! Einlese	

Die Kalibrierung des mA-Eingangs an den Kontakten d/z30 und d/z32 erfolgt in 2 Schritten mit einer Stromquelle. Die Kalibrierpunkte können frei gewählt werden, sollten aber für eine hohe Genauigkeit innerhalb des Messbereiches und mit entsprechendem Abstand gewählt werden. Für den 1. Kalibrierpunkt wird der entsprechende mA-Wert im Eingang simuliert, um anschließend mit dem Button **Einlesen** den Vorgang zu starten. Als Rückmeldung erscheinen in der Maske die Ausschriften **Messung läuft** und **fertig**. Durch die Quittierung mit **OK** wird der Kalibrierwert übernommen und als analoger Balken dargestellt. In gleicher Weise erfolgt das Vorgehen mit dem 2. Kalibrierwert. Die proportionale Abbildung der Werte als Balkendiagramm dient der übersichtlichen Darstellung und zur Kontrolle, um Kalibrierfehler zu vermeiden.

Gleiche Werte für den 1. und 2. Kalibrierpunkt \Rightarrow gleiche Balkenlängen \Rightarrow keine Messwertzuordnung möglich \Rightarrow Ausgang springt!

Für die Selbstüberwachung des Speisestromkreises an den Kontakten d/z30 und d/z32 wird ein Referenzwert bei 20 mA Belastung benötigt, die am einfachsten mit einer Stromsenke zu simulieren ist. Mit dem Button **Einlesen** wird der Spannungswert erfasst und zur Kontrolle im Balkendiagramm dargestellt.

Abschließend sind alle Kalibrierwerte aus dem WINSMART-Programm in den MSK200 zu übertragen. Dazu wird in der Eingangsmaske das Kästchen **Kalibrierwerte überschreiben** angekreuzt und der Button **MSK programmieren** betätigt. Die Übertragung startet und in der Maske erscheint die Frage **bestehende Parameter werden überschrieben** trotzdem fortfahren?

Mit einem **OK** startet der Vorgang und es erscheint die Ausschrift **Parameter übertragen**. Ein letztes **OK** beendet die Übertragung und die Kalibrierwerte sind aktualisiert

6.1.10 Kalibrierung 🗆 Ausgang kalibrieren

Zurück zum H	auptmenü		
KALIBRIEREN	20 mA	Wie angegeben muß die 2-PktKalibrierung für den Stromausgang immer bei 4 und 20 mA bzw. 2 und 10 V für den Spannungsausgang erfolgen.	Grobeinstellung durch Verschieben des Button
			Feineinstellung durch Anklicken der Fläche!
• •	<u>.</u>	See Nach iedem Aboleich mit 0 K. guiltieren I	Endeinstellung mit dem Pfeil-Button!

Vor Beginn der Kalibrierung ist der Parametersatz aus dem Gerät in das WINSMART-Programm einzulesen. Für die Kontrolle sollte an die Kontakte d20 und z20 des Ausgangsstromkreis ein 4¹/₂-stelliges Digitalmultimeter angeschlossen werden. Mit den Jumpern JP1...JP3 ist das benötigte Ausgangssignal für Konstantstrom oder Spannung einzustellen.

Für den Spannungsausgang sind die Kalibrierpunkte mit 2 V und 10 V und für Stromausgang mit 4 mA und 20 mA fest vorgegeben. Der Abgleichvorgang für die Grob-, Fein- und Endeinstellung kann in beliebiger Reihenfolge erfolgen. Das Ende jedes Kalibriervorgangs bildet die Quittierung mit dem **O.K.**-Button. Nach Abgleich des ZERO- und SPAN-Wertes müssen die ermittelten Kalibrierparameter in der Hauptmaske mit **MSK programmieren** und **Kalibrierwerte überschreiben** in den MSK 200 übertragen werden.

Das Ausgangssignal von 0/2-10 V wird durch den über einen Shuntwiderstand von 500 Ω fließenden Konstantstrom von 0/4-20 mA erzeugt, wenn sich die JP1...JP3 in der Stellung ,**V**' befinden.

Bei einem externen Eingangswiderstand von beispielsweise 50 k Ω ergibt das einen Fehler von 1 %, der sich durch eine Nachkalibrierung eliminieren lässt.

6.1.11 Konfigurierung wiederherstellen

Datei	Zugriffsrechte Kalibrierung	Konfiguration) Language		
WINSM Version 7.0 Release 22		Konfigura	Konfiguration wiederherstellen m		
			(c) 15	995-2011 MÜTEC GmbH	
	Programm beenden		Gerätetyp		1

Die Konfiguration beinhaltet alle Variablen des MSK200 und wird automatisch mit dem erstmaligen Vorgang **MSK-Daten einlesen** im PC abgespeichert.

Mit dem Befehl **Konfiguration wiederherstellen** lässt sich jedes Gerät in den Werkszustand zurückversetzen. Voraussetzung dafür ist das beide Vorgänge am gleichen PC ausgeführt werden. Nach dem Befehl **Konfiguration wiederherstellen** sind alle Variablen in den Windowsmasken und im MSK200 wieder mit dem Originaldaten ausgestattet. Ein Gerät mit verfälschten Kalibrierwerten bzw. Einstellungen ist damit auf Knopfdruck wieder funktionsfähig.

6.1.12 Language English, German, Dutch

🔟 MSK - Hauptmenü		
Datei Zugriffsrechte Kalibrierung Konfiguration	Language	
WINSMART ^(R) - H Version 7.0 Release 22	German Dutch	Jramm 1995-2011 MÜTEC GmbH
Programm <u>b</u> eenden	Gerad	MTP-200

Im WINSMART-Programm stehen 3 Sprachversionen zur Auswahl.

Eine Kommunikation zwischen MSK200 und dem PC ist über die frontseitige COM/RS232- oder die RS485-Schnittstelle an den Kontakten b16 und b18 möglich. Mit dem Einstecken des COM-Steckers in die Frontbuchse wird automatisch eine bestehende RS485-Verbindung getrennt und die COM-Verbindung hergestellt. Nach der Trennung der COM-Verbindung ist die RS485-Schnittstelle wieder online. Die RS232- wie auch die RS485-Schnittstelle sind von allen Schaltungsteilen und der Hilfsenergie galvanisch getrennt (siehe Blockschalt-

6.2.1 MSK-Daten einlesen

Mit dem Befehl **MSK-Daten einlesen** wird der Parametersatz des MSK200 in das WINSMART-Programm geladen. Voraussetzung für den Aufbau der Schnittstellenverbindung sind die entsprechenden Einträge in der Maske für die PC-Schnittstelle (COM1 bis COM20) und die MSK-Adresse (1-255). Sollte die MSK-Adresse auf dem Gerät nicht vermerkt sein, so kann mit dem Befehl **Adressen suchen** die unbekannte Geräteadresse ermittelt und eingetragen werden. Nach Abschluss der Datenübertragung erscheint die Ausschrift **Parameter eingelesen** und muss mit dem **OK** quittiert werden.

bild des MSK200).

6.2.2 MSK-Daten programmieren

Der Befehl **MSK programmieren** überträgt den Parametersatz aus dem WINSMART-Programm in den MSK200. Nach der Befehlseingabe erscheint auf dem Bildschirm der Hinweis **Bestehende Parameter werden überschrieben**. **Trotzdem fortfahren?** Mit **OK** wird der Vorgang gestartet. Nach der erfolgreichen Übertragung erscheint als Bestätigung **Parameter wurden übertragen** und wird abschließend mit **OK** quittiert.

6.2.3 Kalibrierwerte überschreiben

Wird in der Eingangsmaske das Kästchen **Kalibrierwerte überschreiben** angekreuzt, können aus dem WINSMART-Programm die Kalibrierparameter des mA-Eingangs und des Analogausgangs mit dem Befehl **MSK programmieren** in das Gerät übertragen werden. In der Maske erscheint dann die Ausschrift **Bestehende Parameter werden überschrieben**. **Trotzdem fortfahren?** Mit **OK** wird der Vorgang gestartet und die nächste Ausschrift lautet **Parameter übertragen**. Ein letztes **OK** beendet den Übertragungsvorgang.

6.2.4 PC-Schnittstelle

Es stehen die Adressen COM1 bis COM20 zur Auswahl.

6.2.5 MSK-Adresse

5/2012

Die MSK-Adresse ist Voraussetzung für eine Kommunikation zwischen PC und MSK200. Als Master sendet der PC ein Telegramm mit der gewünschten Geräteadresse, dass bei einer Einzelverbindung über die COM-Schnittstelle und bei einer Mehrpunktverbindung über die RS485-Schnittstelle von jedem MSK200 (Slave) mitgelesen wird. Nur das Gerät mit der aufgerufenen Adresse nimmt die Verbindung zum Master auf. Für eine störungsfreie Kommunikation dürfen deshalb keine MSK200-Geräte mit gleicher Adresse auf den RS485-Bus geschaltet werden.

6.2.6 Angeschlossene MSK-Geräte Adressen suchen

Mit der Suchfunktion lässt sich die Geräteadresse eines angeschlossenen MSK200 ermitteln. Zusätzlich werden auch die Serial No. und TAG No. aufgelistet.

6.3 MSK-Kennung

MSK-Kennung	
Serial No:	08-32/15
TA <u>G</u> No:	MEC12-15
Adresse:	1 •

6.3.1 Serial No.

Die Serial No. ist eine 8-stellige herstellerspezifische Gerätenummer und garantiert damit für jeden MSK200 die eindeutige Identifizierung. Sie besteht aus einem Datecode (Jahr + Kalenderwoche) sowie einer fortlaufenden Nummer. Die Serial No. kann nicht editiert werden!

6.3.2 TAG No.

Für die TAG No. als anwenderspezifische Gerätekennung stehen maximal 8 alphanumerische Zeichen zur Verfügung.

6.3.3 Adresse

Die Auswahl einer maximal 3-stelligen Geräteadresse erfolgt in dem Feld **Adresse**. Die Programmierung einer Adresse umfasst folgende Schritte:

- 1. Auswahl der max. 3-stelligen Geräteadresse im Feld MSK-Kennung;
- 2. Einstellung der momentanen Geräteadresse im Feld Schnittstelle;
- 3. Befehl MSK programmieren ausführen und bestätigen;
- 4. Neue MSK-Adresse im Feld **Schnittstelle** eintragen und mit dem Befehl **MSK-Daten einlesen** die geänderten Verbindungsdaten prüfen;

Für eine erfolgreiche Geräteverbindung muss die maximal 3-stellige Adresse im Feld **MSK-Kennung** und im Feld **Schnittstelle** mit der Geräteadresse übereinstimmen.

6.4 Messeingang

Zurück zum Hauptmenü	
Meßwert Meßbereichs <u>a</u> nfang Meßbereichs <u>e</u> nde Filterzeit	4.000 mA 20.000 mA
Eingangssignal radizieren	
Meßwertüberwachung	3 500
MIN - Wert MAX - Wert	20.500 mA
Physikalische Darstellung des M	AeBwertes
Einheit Kommastelle	bar 0.000 💌
Bereichsanfang Bereichsende	0.00 bar 20.00 bar
WINCHART	
WINSMAKI	
ACHTUNG! M Kommastelle verschoben.	lit einer Änderung der Kommaeinstellung wird auch die des Alarmwertes in der Maske 'Alarmausgänge'

Ein parametrierbares Filter 1. Ordnung von 0,1 bis 99,9 Sekunden bestimmt das arithmetisches Mittel der Messgröße. Proportional zur **Filterzeit** ändert sich die Einschwingzeit.

Der in der Maske **Messeingänge** spezifizierte Messbereich (z.B. 0,000 bis 2,000 bar) entspricht dem 0 – 100 % Bereich der Grenzwertüberwachung. Der kleinste einstellbare Grenzwert beträgt damit 0,000 bar und der größte 2,000 bar.

Für eine korrekte Parametrierung des MSK200 sollte erst der Messbereich und anschließend die Grenzwerte eingestellt werden.

Nach einer Änderung des Messbereiches sind immer auch die eingestellten Grenzwerte zu überprüfen!

Für normierte Messsignale sind in der Maske unter **physikalische Darstellung** weitere Eintragungen vorzunehmen, die für die Darstellungen in der Online-Maske benötigt werden:

Einheit:	Physikalische Einheit der Messgröße (bar, °C, K, usw.)
Kommastelle:	keine oder 1, 2 oder 3 Stellen hinter dem Komma
Bereichsanfang:	Physikalischer Wert der Messgröße am Messbereichsanfang
Bereichsende:	Physikalischer Wert der Messgröße am Messbereichsende
Bereichsgrenze–MIN:	Physikalischer Wert der Messgröße, bei dem ein Wartungsalarm ausgelöst wird!
Bereichsgrenze–MAX:	Physikalischer Wert der Messgröße, bei dem ein Wartungsalarm ausgelöst wird!

Für die korrekte Grenzwertüberwachung sollte die **Bereichsgrenze-MIN** und die **Bereichsgrenze-MAX** immer außerhalb des Messbereiches liegen, weil ein Überschreiten dieser Grenzen den Wartungsalarm auslöst.

Zurück zum Hauptmenü	Jumper Finder
mit dem Jumper 3 kann das Signa	l im Analogausgang für Konstantstrom/mA
r Spannung/V eingestellt werden !	
SGANG	
<u>F</u> ilterzeit 0.1 s	MI <u>N</u> -Begrenzung 3.6 mA
Bereichs <u>a</u> nfang 4.0 mA	MAX-Begrenzung 21.0 mA
Bereichsende 20.0 mA	Alarmwert 22.0 mA
	Ausgangssignal radizieren

Für den Analogausgang steht ein parametrierbares Filter 1. Ordnung von minimal 0,1s bis maximal 9,9s zur Verfügung. Proportional zur **Filterzeit** ändert sich die Einschwingzeit.

Der Stellbereich für den Analogausgang wird durch **Bereichsanfang** und **Bereichsende** festgelegt. Für den Stromausgang beträgt der max. Wert 22 mA, für den Spannungsausgang 11 V. Zusätzlich lässt sich der Stellbereich von 0-100 % durch die Eingabe einer **MIN-** bzw. **MAX-Begrenzung** gegen Unter- bzw. Überschreiten schützen.

Der Alarmwert für den Analogausgang ist ein Festwert und wird im Fehlerfall aktiviert, wenn in der Maske Überwachungsmaßnahmen in der Rubrik Fehlerquelle die Funktion Alarmwert für den Analogausgang ausgewählt wurde.

Für die Radizierung des Analogausgangssignals muss im Fenster **Ausgangssignal radizieren** ein "**x**" gesetzt werden.

Alle in der Maske getätigten Einstellungen werden erst mit dem Befehl **MSK programmieren** (in der Hauptmaske) im Gerät gespeichert und aktiviert.

Würde als **Alarmwert** der Wert 0 eingetragen, dann kann die Bruchüberwachung für den mA-Ausgang im Fehlerfall nicht zwischen dem **Alarmwert/0mA** und dem **Leitungsbruch/0mA** unterscheiden. Ein ständiges Schalten des Relais-3 wäre die Folge.

Bei einem Spannungsausgang kann die Selbstüberwachung weder einen Leitungskurzschluss noch einen Leitungsbruch erkennen!

mA-Werte für ein Ausgangssignal ohne und mit Radizierung:

Eingangssignal	Ausgangssignal ohne Radizierung	Ausgangssignal mit Radizierung
0 %	4,00 mA	4,00 mA
25 %	8,00 mA	12,00 mA
50 %	12,00 mA	15,31 mA
75 %	16,00 mA	17,86 mA
100 %	20,00 mA	20,00 mA

ALARM 1 (Relai	s-1)					
Alarmwert:	6.00	mA		Alarmtyp:	MIN-Alarm	•
Hysterese:	1.0	2	Verzögerung: 0.5	S Funktion:	Ruhestrom	•
ALARM 2 (Relai	s-2)					
Alarmwert:	18.00	mA		Alarmtyp:	MAX-Alarm	-
Hysterese:	1.0	%	Verzögerung: 0.5	S Funktion:	Ruhestrom	-
ALARM 3 (Trans Alarmwert:	sistorausg 8.00	jang-1) mA		Alarmtyp:	MIN-Alarm	•
Hysterese:	1.0	2	Verzögerung: 0.5	S Funktion:	Ruhestrom	•

Die Maske **Alarmausgänge** dient zur Parametrierung der beiden Relaiskontaktausgänge und des Transistorausgangs für die Grenzwertalarmierung.

Jedem Alarmwert ist ein Hysterese-Wert, einstellbar zwischen 0 und 99,9 % des Messbereiches, zugeordnet.

Für einen Temperaturmessbereich von 500 °C beträgt die Hysterese von 2 % einem Temperaturwert von 10 °C. Ein ausgelöster 400 °C MAX-Alarm wird somit erst bei einem Temperaturwert von < 390 °C wieder aufgehoben.

Eine Alarm-Verzögerung von minimal 0 bis maximal 9,9 Sekunden stellt sicher, dass kurzzeitige Alarmwertüberschreitungen nicht zur Grenzwertalarmierung führen.

Zur Verfügung stehende Alarmtypen:

MAX-Alarm	bei steigendem Messwert
MIN-Alarm	bei fallendem Messwert
Gradienten-MAX-Alarm be	ei steigendem und fallendem Funktionsverlauf
Gradienten-MIN-Alarm	bei steigendem und fallendem Funktionsverlauf

Zur Verfügung stehende Alarmfunktionen:

Arbeitsstromprinzip	(im Gutzustand steht das Relais nicht unter Strom)
Ruhestromprinzip	(im Gutzustand steht das Relais unter Strom)
keine Funktion	(Alarmausgang ist abgeschaltet)

Beim Gradientenalarm wird als zusätzlicher Parameter das **Zeitintervall für Gradientenalarm** benötigt. Es stellt ein Zeitfenster zwischen 0 und 9999 Sekunden dar, in welchem 20 Samples erfasst und für die Berechnung zugrunde gelegt werden.

Alarmwert und Alarmtyp werden auch in der Maske **Online-Darstellung** abgebildet, wobei ein ausgelöster Grenzwertalarm durch eine rote Ausschrift gekennzeichnet wird.

6.6.1 Differenzieller Gradientenalarm und seine Parametrierung

MIN-Alarm

Jedes Zeitintervall beinhaltet 20 Samples, wodurch sich die minimale Impulsdauer am Alarmausgang zu 0,05 x 60s = 3s ergibt!

Jedes Zeitintervall beinhaltet 20 Samples, wodurch sich die minimale Impulsdauer am Alarmausgang zu 0,05 x 20s = 1s ergibt!

Analogausgang +/- 1.0 % vom Meßbereich Analogausgang +/- 1.0 % vom Nominalwert (=20mA/10 Analogausgangs- und Alarmausgangs-Steuerung im Fehlerfall Fehlerquellen: Analogausgang: Relais 1 Relais 2 Logik 1 Analogausgang Alarmwert v limit v limit v limit v mA-Eingang Alarmwert v an v an v an v
Analogausgang +/- 1.0 % vom Nominalwert (=20mA/11 Analogausgangs- und Alarmausgangs-Steuerung im Fehlerfall Fehlerquellen: Analogausgang: Relais 1 Relais 2 Logik 1 Analogausgang Alarmwert v limit v limit v limit v mA-Eingang Alarmwert v an v an v an v
Analogausgang +/- 1.0 % vom Nominalwert (=20mA/11 Analogausgangs- und Alarmausgangs-Steuerung im Fehlerfall Fehlerquellen: Analogausgang: Relais 1 Relais 2 Logik 1 Analogausgang Alarmwert v limit v limit v mA-Eingang Alarmwert v an v an v
Analogausgangs- und Alarmausgangs-Steuerung im Fehlerfall Fehlerquellen: Analogausgang: Relais 1 Relais 2 Logik 1 Analogausgang Alarmwert v limit v limit v limit v mA-Eingang Alarmwert v an v an v an v
nA-Eingang Alarmwert v an v an v
mA-Eingang Alarmwert <u> </u>
Minimaler mA-Wert Alarmwert v aus v aus v aus v
Maximaler mA-Wert Alarmwert v aus v aus v
Transmitter-Speisestromkreis Alarmwert 💌 lim-prio 💌 lim-prio 💌
Relais 1, Relais 2, Relais 3 momentaner Wert 💌 limit 💌 an 💌 limit 💌
Interner Gerätefehler momentaner Wert 💌 lim-prio 💌 lim-prio 💌

Für die Selbstüberwachung von mA-Eingang und Analogausgang kann die zulässige Fehlertoleranz +/- 0,2 % bis +/- 5,0 % betragen.

Eine Toleranzüberschreitung führt zur Auslösung des Alarms für Wartungsbedarf durch das Relais-3 verbunden mit einem Dauerlicht der Alarm-LED in der Gerätefront.

Insgesamt werden beim MSK200 7 Fehlerquellen unterschieden. Abhängig von der Fehlerquelle lassen sich dem Analogausgang und den Alarmausgängen unterschiedliche Funktionen zuordnen. Sie bestimmen dann das Verhalten dieser Ausgänge im Fehlerfall. Liegt kein Fehler vor gelten für den Analogausgang die Einstellungen in der Maske **Analogausgang** und für die Alarmausgänge die Parametrierungen in der Maske **Alarmausgänge**. Nur im Fehlerfall werden den Ausgängen die in der Maske **Überwachungsmaßnahmen** ausgewählten Funktionen überlagert. Beim Auftreten eines zweiten Fehlers entscheidet das Ranking der beteiligten Funktionen über das Verhalten des beteiligten Ausgangs.

Alarmausgänge können in der Maske **Alarmausgänge** mit **keine Funktion** abgeschaltet werden. Sie stehen deshalb auch nicht mehr in der Maske **Überwachungsmaßnahmen** für die Wartungsalarmierung zur Verfügung und sind ausgeblendet.

Analogausgang und Alarmausgänge werden nur vom Master-Controller gesteuert. Durch die gegenseitige Überwachung der beiden 16Bit-Controller (DuoTec[®]-System) in Verbindung mit weiteren Sicherungsmaßnahmen wird gewährleistet, dass auch bei einem fehlerhaften Verhalten des Master-Controllers der Alarm für Wartungsbedarf ausgelöst wird.

5/2012

Verhalten des Analogausgangs im Fehlerfall:

Funktion	Ranking	Verhalten im Fehlerfall
Alarmwert		Das Ausgangssignal springt auf den in der Maske Analogausgang definierten Alarmwert!
eingefrorener Wert		Das Ausgangssignal verbleibt auf dem Wert vor Eintritt des Fehlers und damit im Offline-Mode!
momentaner Wert		Das Ausgangssignal wird weiterhin aktualisiert, kann aber verfälscht sein und befindet sich weiter im Online-Mode!

Verhalten der Relaisausgänge und des Transistorausgangs im Fehlerfall:

Funktion	Ranking	Verhalten im Fehlerfall
an		Der Alarmausgang wird eingeschaltet und meldet damit den Wartungsbedarf nach außen!
aus		Der Alarmausgang wird ausgeschaltet!
lim-prio		Der Alarmausgang wird nur ausgeschaltet, wenn vor dem Fehlerfall kein Grenzwertalarm gemeldet war!
limit		Der Alarmausgang beteiligt sich nicht an der Fehlermeldung und die Grenzwertalarmierung bleibt erhalten!

Wahrheitstabelle für Grenzwert- und Wartungsalarm:

Funktion	Grenzwertalarm	Wartungsalarm	Alarmausgang	Bemerkungen
an	x	an	an	Nur der Wartungsalarm wird nach außen weitergeleitet!
aus	x	an	aus	Der Wartungsalarm schaltet den Grenzwertalarm ab!
lim-prio X		an	aus	Der Wartungsalarm schaltet den Grenzwertalarm ab, jedoch ein bestebender Alarm wird weiter
	an (Alarm besteht!)	an	an	nach außen gemeldet!
limit	an	X	an	Der Grenzwertalarm wird unge-
	aus	x	aus	hindert nach außen gemeldet!

x = beliebig (an oder aus)

Mit Eintritt des 1. Fehlers entspricht das Verhalten des Analogausgangs und der Alarmausgänge der Parametrierung in der Maske **Überwachungsmaßnahmen** ohne Berücksichtigung des Rankings.

Erst bei einem 2. Fehler würde das Ranking der beteiligten Funktionen die Ansteuerung des Analogausgangs und der beteiligten Alarmausgänge bestimmen (siehe nachfolgende Beispiele).

Erstes Beispiel

1. Fehler: Analogausgang	o				
Analogausgangs- und Alarmausg Fehlerquellen: Analogausgang	Analogausgang: Alarmwert	enierrali Relai	is 1 Rela	is 2 Logik 1 ▼ lim-prio ▼	
Steuerung der Ausgänge:	Alarmwert	↓ aus	↓ limit	↓ lim-prio	

Später auftretender 2. Fehler: mA-Eingang

hlerquellen:	Analogausgang:		Rel	ais 1	Rel	ais 2	Logik 1
alogausgang	Alarmwert	•	aus	•	limit	•	lim-prio 💌
A-Eingang	Alarmwert	•	an	•	an	•	lim-prio 💌
	1		Ţ		1		1
	V						•
Steuerung der Ausgänge:	Alarmwert		an		an		lim-prio

Das vom Ranking bestimmte Verhalten der Ausgänge:

Analogausgang	verbleibt auf dem Alarmwert
Relais 1	wechselt von Relais aus auf Relais an
Relais 2	wechselt von Relais limit auf Relais an
Logik 1	verbleibt auf lim-prio

Zweites Beispiel

nalogausgangs- und Alarmausga	angs-Steuerung im Fehler	fall		
Fehlerquellen:	Analogausgang:	Relais	1 Rela	is 2 Logik 1
Analogausgang	momentaner Wert 💌	an 💌	aus	▼ lim-prio ▼
mA-Eingang	Alarmwert 💌	aus	r limit	▼ lim-prio ▼
	Ļ	Ļ	Ļ	Ļ
Steuerung der Ausgänge:	Alarmwert	an	aus	lim-prio
vom Ranking bestimmte V	erhalten der Ausgän	ge:		
Analogausgang	springt auf den Ala	armwert		

Analogausgang	springt auf den Alarmwert
Relais 1	wird eingeschaltet
Relais 2	wird ausgeschaltet
Logik 1	verbleibt auf lim-prio

	1		
∀artungsbedarf für:	aktueller Fehler	Fehlerspeicher	
Analogausgang	×	X	
mA-Eingang	Г	Γ	
Minimaler mA-Wert	X	×	
Maximaler mA-Wert	Г		
Transmitter-Speisestromkreis	Г	Г	
Relais 1, Relais 2, Relais 3	Г	Г	
Interner Gerätefehler			-
EEPROM-Speicher	Г	Г	
RAM-/EPROM-Speicher	Г		
Slave-Prozessor	Г		
Versorgung für Slave-Prozessor	Г		
Versorgung für Master-Prozessor	Г	Г	
- pumunumumumumumumumumumumumumumumumumumu	1		
Eehlerspeicher zurücksetzen	ļ		

Der Diagnosemanager dokumentiert in übersichtlicher Form alle aufgetretenen Fehlerfälle innerhalb und außerhalb des MSK200.

Tabellarisch aufgelistet sind alle 11 Überwachungsfunktionen mit den 2 Fenstern für **aktueller Fehler** und **Fehlerspeicher**.

Jeder vorhandene Fehler wird als Alarm für Wartungsbedarf mit dem Dauerlicht der roten Alarm-LED und dem Relais-3 gemeldet. Im **Diagnosemanager** wird die Fehlerquelle im Fenster **aktueller Fehler** und **Fehlerspeicher** angezeigt. Der **Fehlerspeicher** für einen vorliegenden Fehler kann mit dem Befehl **Fehlerspeicher zurücksetzen** nicht gelöscht werden.

Nach einem nur kurzzeitig aufgetretenen oder nicht mehr vorliegenden Fehler wechselt die Alarm-LED vom Dauerlicht in den dauerhaft blinkenden Mode und Relais-3 geht wieder in den Gutzustand. Im **Diagnosemanager** wird der nicht mehr vorliegende Fehler nur noch im Fenster **Fehlerspeicher** angezeigt und kann jetzt auch mit dem Button **Fehlerspeicher zurücksetzen** gelöscht werden.

Der **Diagnosemanager** dokumentiert auch kurzzeitig aufgetretene Fehler. Nach einer Hilfsenergieunterbrechung sind die Inhalte aller Fehlerspeicher gelöscht.

Inbetriebnahme des MSK200ia-E-HT: Nächste Kalibrierung: 1/2013	10.01.2012		
Nächste Kalibrierung: 1/2013			
Kommentar <u>e</u> inlesen <u>K</u> o	mmentar speichern	Kommentar <u>d</u> ru	cken

Der Kommentarspeicher, als kleine Datenbank, ermöglicht die komfortable und einfache Möglichkeit der Speicherung von Informationen, Hinweisen und Notizen, die das Gerät und den zu versorgenden Transmitter betreffen. Die zur Verfügung stehende Kapazität umfasst maximal 2000 ASCII-Zeichen und dürfte damit für die meisten Anwendungsfälle ausreichend groß sein. Mit dem Befehl **Kommentar drucken** lässt sich der Inhalt des Kommentarspeichers auf einem unter WINDOWS zur Verfügung stehenden Printer auszudrucken.

Schriftart und Layout dieser Kopie sind fest vorgegeben und können nicht editiert werden.

Kommentar einlesen:	Aus dem MSK200 wird der Text in die WINSMART-Maske geladen;
Kommentar speichern:	Aus der WINSMART-Maske wird der Text in den MSK200 geschrieben;

In der Online-Maske sind das Ein- und Ausgangssignal analog und digital dargestellt. Zusätzlich werden auch die Alarme mit ihren Grenzwerten abgebildet. Bei Grenzwertüberschreitung bzw. Alarmauslösung wird dieser mit roter Ausschrift dargestellt. Ein nicht verwendeter Alarm (**keine Funktion**) erscheint auch nicht in der Online-Maske.